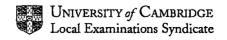
CAMBRIDGE
INTERNATIONAL EXAMINATIONS

Miridge Com

NOVEMBER 2002


INTERNATIONAL GCSE

MARKSCHEME

MAXIMUM MARK : 80

SYLLABUS/COMPONENT: 0620/3

CHEMISTRY (EXTENDED)

Page 1 of 5	Mark Scheme	Syllabu
	IGCSE Examinations – November 2002	0620
		90

Cambridge.com In the mark scheme if a word or phrase is underlined it(or an equivalent) is required for the award of the mark.

(.....) is used to denote material that is not specifically required.

OR designates alternative and independent ways of gaining the marks for the

or indicates different ways of gaining the same mark.

COND indicates that the award of this mark is conditional upon a previous mark being gained.

- Unusual responses which include correct Chemistry that answers the question should always be rewarded-even if they are not mentioned in the marking scheme.
- (a) (i) vanadium(V) oxide as catalyst ignore oxidation state 1 and accept no oxidation state temperature 300 to 600 °C pressure up to 10 atmos, accept atmospheric pressure volume ratio of gases either 2:1 or slight excess of oxygen ANY three [3] (ii) decrease [1] COND back reaction is endothermic or same argument based on forward reaction is exothermic [1]or increase in temp favours back reaction (iii) dissolve in (conc) sulphuric acid NOT dilute [1] add water or dilute [1] (b) sodium hydroxide or carbonate or hydrogencarbonate [1] zinc oxide or hydroxide or carbonate [1]**NOT** zinc barium nitrate or chloride or hydroxide or barium ions [1] neutralisation NOT acid/base [1] copper sulphate or anhydrous copper sulphate [1] accept "unhydrated" **NOT** formula (ii) goes blue or becomes hot or steam [1]

(iii) copper oxide

[1]

Page 2 of 5	Mark Scheme	Sylla	T
	IGCSE Examinations – November 2002	0620 %	6
			C
			Maria
			Ta
(:) <i>(</i>	1050 0.02 malas	£43	86
, ,	3/250 = 0.02 moles	[1]	co.
N	$M\mathbf{r} = 80$	[1]	773
8	$80 \times 0.02 = 1.6 \text{ g}$	Ϊij	
	y) to be marked conseq to (iii)		

		NB	5/250 = 0.02 moles Mr = 80 80 x 0.02 = 1.6 g (iv) to be marked conseq to (iii) rect answer no working ONLY [1]	[1] [1] [1]
TO	ΓAL	= 1	7	
2	(a)	(i)	high densities high fixed points mp or bp coloured compounds hardness complex ions	
			ANY three	[3]
		(ii)	13	[1]
	(b)	(i)	manganese chloride water	[1] [1]
		(ii)	manganese(III) and (IV) oxides	[1]
	(c)	(i)	rate decreases or becomes zero do NOT accept rate increases then decreases COND concentration decreases hydrogen peroxide used up ONLY [1]	[1] [2]
		(ii)	steeper initial gradient double final volume	[1] [1]
		(iii)	initial gradient less final volume the same must relate to shape of graph	[1] [1]
TO	TAL	= 1	4	
3	(a)	(i)	number of outer electrons increases or number of electrons more than complete energy level or number of electrons to be lost or accept clear examples NOT just different groups or valencies	[1]
		(ii)	gain electrons number of electrons to be gained is less across period or number of outer electrons increases	[1] [1]

Page 3 of 5	Mark Scheme	Syllabus
	IGCSE Examinations – November 2002	0620

of 5		Mark Scheme	Syllabus	
		IGCSE Examinations – November 2002	0620	
			Cal	1
			Syllabus Man, Othor Office (1) [1] [1]	Brio
(b)		Al_2S_3	[1]	13
		Si ₃ P ₄	[1]	
(c)	(i)	silicon	[1]	
	(ii)	sodium	[1]	
	(III)	Sydidin	·	
	(iii)	sulphur or chlorine	[1]	
(d)		unreactive or inert or does not react	[1]	
(e)		3Na to 1P COND next two marks	[1]	
		correct charges	· [1]	
		8e around P	[1]	
		If covalent then only one mark for 3Na to 1P		
(f)	(i)	11.5/23 = 0.5	[1]	
	(ii)	0.25	[1]	
	(-)	conseq to (i)	1-3	
	(iii)	$0.25 \times 32 = 8 g$	[1]	
	()	conseq	[-]	
	(iv)	2.0 g	[1]	
	(11)	only conseq to (iii) if answer to (iii) is less than 10		
		NB If (ii) is 0.3(125), no excess is possible, (iv) ZE	CRO	
TAL	_ 1.	4		
IAL	1	O		
(-)	(5)	wine NOT and conductor		
(a)	(1)	wiring NOT good conductor pipes		
		utensils		
		roofs		
		electroplating		
		lightning conductor bi-metallic strips		
		NOT as in an metal or any other was then involved	11	4

NOT coinage metal or any other use than involves an alloy

[2]

TWO from above

Page 4 of 5	Mark Scheme	Sylla
	IGCSE Examinations – November 2002	0620
		Call
		Maria
(;;)	regular array	m · · · · · · · · · · · · · · · · · · ·
(ii)	different sizes	[1]
	delocalised or mobile or free electrons	[i]

		(ii)	regular array different sizes delocalised or mobile or free electrons	[1] [1] [1]
	(b)	(i)	copper deposited or mass increases	[1]
		(ii)	copper goes into solution or mass decreases	[1]
		(iii)	$Cu^{2+} + 2e \Longrightarrow Cu$	[1]
		(iv)	oxygen sulphuric acid accept hydrogen sulphate	[1] [1]
	(c)	(ii)	cells produce electricity or exothermic or change chemical energy into electrical energy	[1]
			electrolysis uses it or endothermic or change electrical energy into chemical energy	[1]
	(d)	(i)	CuO + C ==> Cu + CO or 2CuO + C ==> 2 Cu + CO ₂ or any other correct reductant – hydrogen or metal	[1]
		(ii)	Copper(II) hydroxide = copper oxide + water [1] accept symbols	
			2Cu(NO ₃) ₂ ==. 2CuO + 4NO ₂ + O ₂ unbalanced ONLY [1] NOT word equation	[2]
TO	TAL	= 1	6	
5	(a)		molecular formula Must be able to give isomers, need not be alkenes	[1]
			two corresponding isomers If do not correspond then MAX [2] out of [3]	[2]
	(b)	(i)	ethanol structure	[1] [1]
		(ii)	ethane structure	[1] [1]
	(c)	(i)	many simple molecules or monomers form one large one or macromolecule or chain	[1] [1]

Page 5 of 5

Mark Scheme
Syllabus
IGCSE Examinations – November 2002

O620

[1]

(ii) addition polymer only one product- the polymer [1] [1] condensation - polymer and water etc [1] (iii) correct unit COND evidence of polymer in structure eg shows [1] continuation such as terminal bonds water proof or impervious or flexible or (d) (i) good adhesion or non-biodegradable or unreactive [1] [1] (ii) steel in contact with water or air (iii) zinc more reactive oxygen /water reacts with zinc not iron sacrificial protection zinc anodic steel receives electrons from zinc zinc forms cations [3] TWO valid points

TOTAL = 17